Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function

نویسندگان

چکیده

Integral inequalities involving many fractional integral operators are used to solve various differential equations. In the present paper, we will generalize Hermite–Jensen–Mercer-type for an h-convex function via a Caputo–Fabrizio integral. We develop some novel inequalities. also identities differentiable mapping, and these be give estimates Some familiar results recaptured as special cases of our results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Inequalities for h(x)-Riemann-Liouville Fractional Integrals

In this article, we obtain generalizations for Grüss type integral inequality by using h(x)-Riemann-Liouville fractional integral.

متن کامل

ON GENERALIZATION OF DIFFERENT TYPE INTEGRAL INEQUALITIES FOR s-CONVEX FUNCTIONS VIA FRACTIONAL INTEGRALS

In this paper, a new general identity for differentiable mappings via Riemann-Liouville fractional integrals has been defined. By using of this identity, author has obtained new estimates on generalization of Hadamard, Ostrowski and Simpson type inequalities for functions whose derivatives in absolutely value at certain powers are s-convex in the second sense.

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Fractional Hermite-Hadamard type inequalities for n-times log-convex functions

In this paper, we establish some Hermite-Hadamard type inequalities for function whose n-th derivatives are logarithmically convex by using Riemann-Liouville integral operator.

متن کامل

New general integral inequalities for quasi-geometrically convex functions via fractional integrals

In this paper, the author introduces the concept of the quasi-geometrically convex functions, gives Hermite-Hadamard’s inequalities for GA-convex functions in fractional integral forms and defines a new identity for fractional integrals. By using this identity, the author obtains new estimates on generalization of Hadamard et al. type inequalities for quasi-geometrically convex functions via Ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fractal and fractional

سال: 2021

ISSN: ['2504-3110']

DOI: https://doi.org/10.3390/fractalfract5040269